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Abstract— Medical natural language processing (NLP) has
greatly benefited from the increasing availability of electronic
health records (EHRs) across multiple languages. However,
most available resources are heavily biased toward English,
restricting the development of non-English medical NLP models
and limiting their broader adoption in healthcare AI.

In general domain NLP, monolingual models trained on high-
resource European languages often outperform multilingual
models. However, this paper takes a domain-specific perspec-
tive, highlighting the unique linguistic characteristics of medical
terminology. Using a diverse corpus of medical texts in English,
Italian, Spanish, and French, we pretrain RoBERTa-based
models in both monolingual and multilingual settings. Contrary
to conventional NLP trends, our results suggest that multilin-
gual training enhances cross-lingual knowledge transfer and
can even outperform monolingual models in medical domains.
Through a comparative analysis of orthographic and phonemic
representations, we find evidence suggesting that the strong
Latin roots of medical terminology may facilitate effective
knowledge sharing among languages with similar scripts.

These findings indicate that orthographically focused
multilingual strategies could provide a more robust framework
for modeling specialized medical terminology. In particular,
multilingual training that capitalizes on script similarities
appears to enable richer information utilization, which may
contribute to improved medical NLP performance across
languages.

Clinical relevance— Advancing multilingual medical lan-
guage models can enhance clinical decision support and expand
access to critical healthcare information across linguistically
diverse communities.
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I. INTRODUCTION

Electronic health records (EHR), including patient notes,
radiology reports, and clinical conversation transcripts, are
being collected in ever increasing volumes. These resources,
along with the emergence of publicly available medical
datasets (e.g., PubMedQA [1]), provide a rich foundation
for the development of advanced language processing tools
in the medical domain. This abundance of data has fueled
significant progress in medical natural language processing
(NLP), allowing a more comprehensive automated analysis
of clinical documentation and physician diagnostic notes [2].
Various research efforts have already produced specialized
language and speech models to support clinical decision-
making, such as Med-Flamingo (a vision–language model
for healthcare) [3] and automated medical report generation
systems.

Despite these advances, a key challenge persists: medical
text and speech data are overwhelmingly in English, creating
a major barrier for multilingual medical NLP research [4].
Although multilingual data sets have recently become avail-
able, they still reflect an existing language imbalance [1].
This imbalance poses challenges for models trained solely
on languages other than English, which often suffer from
insufficient data. Although dataset imbalance is common in
NLP, it is particularly problematic in the medical domain
due to disparities in access to technology and digitized
records across regions. As a result, multilingual models
capable of effective cross-lingual knowledge transfer remain
underexplored in medical NLP [5]. Addressing this gap is
essential to expand access to AI tools for healthcare in
linguistic communities.

In standard NLP tasks, researchers often focus on im-
proving monolingual strategies, as multilingual models can
under-perform in high-resource settings [6]. For example, a
bilingual English-French model can be less effective than
two separate monolingual models. To reduce this gap, some
studies introduce phonemic representations that align words
across languages by sound, helping highlight latent similar-
ities [7], [8].

However, the medical domain presents distinct linguis-
tic characteristics. Medical terms in many languages are
rooted in Latin or Greek, resulting in shared spellings
across languages [9]. Phonemic transcription may obscure
these orthographic similarities, as pronunciation varies across
languages even when spelling does not. We hypothesize
that preserving orthographic forms (e.g., original spelling) is
more advantageous for cross-lingual learning in this domain.



By maintaining Latin-derived spellings, models can more
easily recognize and transfer knowledge of medical concepts
across languages. Our approach leverages a multilingual
model using English as a high-resource bridge language
and emphasizes orthographic consistency. This strategy leads
to improved performance across all metrics evaluated on
PubMedQA [1].

This work makes three main contributions:
• We develop and evaluate a multilingual model that uses

English as a mediating language to enhance perfor-
mance in European languages. This approach suggests
that a multilingual training strategy with cross-lingual
transfer can effectively support medical NLP tasks in
various linguistic settings.

• We provide an in-depth examination of linguistic fea-
tures in the medical domain, focusing on the prevalence
of Roman scripts and Latin (or Greek) roots. This
analysis provides insights into why certain cross-lingual
strategies, particularly those leveraging orthographic
similarity, may be especially effective in healthcare
contexts.

• We offer a comparative study of orthographic versus
phonemic representations in multilingual medical lan-
guage models. Our findings indicate that the preserva-
tion of orthographic information (e.g. original written
text) tends to yield better cross-lingual performance over
phonemic transcription in essential medical NLP tasks,
providing methodological insights for future speech
model development in healthcare.

II. RELATED WORKS

A. Medical Language Models

Recent advances in Large Language Models (LLMs) spe-
cialized for the medical domain have demonstrated remark-
able performance on tasks such as clinical text classification,
entity extraction, and medical question answering. Early
examples include BioBERT [10] and PubMedBERT [11],
which adapted BERT [12] to biomedical corpora, and more
recently BioGPT [13] and BioMistral [14], which leveraged
generative pre-training on large-scale biomedical datasets.
Although these domain-focused models achieve state-of-
the-art results on English medical QA benchmarks (e.g.,
PubMedQA), performance often declines for non-English
medical data. Multilingual or cross-lingual evaluation in
medical QA remains underexplored, underscoring the need
for multilingual approaches that effectively capture clinical
knowledge across different linguistic settings.

B. Phonemic Representations

As shown in Fig. 1, phonemic transcription captures
pronunciation-based similarities across languages with diver-
gent spellings. Transformer-based multilingual LLMs such
as mBERT [12] and XLM-R [15] can generalize across
languages but often struggle in low-resource or novel script
scenarios [16]. To address these challenges, various ap-
proaches normalize orthographic differences using translit-
eration or subword modeling. For instance, [8] employed

IPA-based phonemic representations to extend named entity
recognition (NER) to unseen languages in a zero-shot setting.
Other work has used morphological or phonological subword
units for embedding adaptation [17], or phonetic representa-
tions in multimodal training [18]. These efforts suggest that
phoneme-level input may enhance model robustness in low-
resource scenarios, though its effectiveness varies depending
on linguistic and domain-specific factors.

Fig. 1. Comparison of Orthographic and Phonemic Representations
Across Languages This figure illustrates how phonemic transcription pro-
vides a distinct representation compared to orthographic text. The example
illustrates how phonemic transcription differs from orthographic text in
multilingual settings, while still preserving key medical terminology such
as ‘mammographic’ across languages.

III. METHODS

A. Models and Data Preprocessing

For pretraining, we used the HitZ Multilingual Medical
Corpus from Hugging Face, which comprises medical texts
in Italian, Spanish, and French [19]. The corpus is divided
into four subsets: separate monolingual corpora for Italian,
Spanish, and French (each containing 500K samples) and a
combined multilingual corpus totaling 1.5M samples.

To explore phoneme-based representations, we generated
International Phonetic Alphabet (IPA) versions of each cor-
pus using the Epitran library [20], which provides rule-
based grapheme-to-phoneme conversion for a wide range of
languages. Inputs were lowercased and symbols were cleaned
to ensure consistent phoneme transcriptions with minimal
noise. As illustrated in Fig. 1, phonemic transcription cap-
tures pronunciation-based similarities that orthographic rep-
resentations may overlook, particularly in multilingual con-
texts.

For tokenization, we trained separate SentencePiece BPE
tokenizers [21] for each of the 22 datasets (11 orthographic
and 11 phonemic). This tokenizer setup allowed for subword
segmentation optimized for each language and script type.

To evaluate the impact of orthographic and phonemic rep-
resentations, we designed 11 configurations of monolingual
and multilingual corpora, as summarized in Table I. For fine-
tuning and evaluation, we used the pqa artificial version of



the PubMedQA dataset, which contains English biomedical
question-answering examples. Only samples labeled as ”yes”
or ”no” were retained. The dataset was balanced by randomly
sampling 13,500 examples per class for training (27,000
total) and 1,500 examples per class for testing (3,000 total).
No separate validation split was used.

TABLE I
COMPLETE LANGUAGE REPERTOIRE COMBINATIONS

Language Repertoire Eng Fra Ita Spa
Monolingual (Fra) ✓
Monolingual (Ita) ✓
Monolingual (Spa) ✓
Bilingual (Eng-Fra) ✓ ✓
Bilingual (Eng-Ita) ✓ ✓
Bilingual (Eng-Spa) ✓ ✓
Bilingual (Fra-Ita) ✓ ✓
Bilingual (Fra-Spa) ✓ ✓
Bilingual (Ita-Spa) ✓ ✓
Multilingual (Fra-Ita-Spa) ✓ ✓ ✓
Multilingual (Eng-Fra-Spa-Ita) ✓ ✓ ✓ ✓

Each configuration was paired with its corresponding IPA-
transformed variant, resulting in a total of 22 datasets (11
orthographic and 11 phonemic) for pretraining.

Before training, all datasets underwent standardized pre-
processing steps:

• Tokenization We trained SentencePiece BPE tokenizers
for each corpus variant to ensure optimal subword
segmentation adapted to the respective language and
representation type (orthographic or phonemic) [21],
[22].

• Masked Language Modeling (MLM) Fill-mask cor-
pora are prepared by masking tokens in the input
sequences following established protocols for the MLM
objective.

For fine-tuning, we used a translated version of the Pub-
MedQA dataset[1], originally in English. The dataset, which
includes context, question, and final decision (yes/no), is
translated into Italian, Spanish, and French for the context
and question fields using MarianMT translation models [23]:

• French: Helsinki-NLP/opus-mt-en-fr
• Italian: Helsinki-NLP/opus-mt-en-it
• Spanish: Helsinki-NLP/opus-mt-en-es

B. Model Analysis

To understand how models processed linguistic informa-
tion, we examined internal representations and token-level
interactions, focusing on the effects of language combina-
tions and script types (orthographic vs. phonemic).

1) Word-wise Attention Visualization: To better under-
stand the model’s decision-making process, we analyzed
word-wise attention distributions during inference. These
distributions were visualized as heat maps overlayed on
the input text, highlighting how different models assigned
attention to each token within the given question and context.

By comparing these heatmaps between models trained
in different datasets, we identified patterns in token-level

attention and examined how linguistic and script variations
influenced the model’s internal mechanisms. This analysis
complemented the CKA-based findings by offering a more
fine-grained view of representational differences at the word
level.

For visualization, we extracted the self-attention weights
from the final transformer layer and averaged across all
attention heads. This provided a unified view of the model’s
token-level focus throughout the input sequence.

2) CKA-Based Cross-lingual Similarity Calculation: To
better understand how multilingual models encode linguistic
information, we used the Centered Kernel Alignment (CKA)
method to measure the similarity between the hidden states
of different models. CKA quantifies how closely two model
representations align, allowing us to compare the internal
feature spaces learned by models trained with different
language combinations and script types (orthographic versus
phonemic). We computed the CKA scores as follows:

• Hidden State Extraction: For each model, we ex-
tracted hidden states by processing the entire test set
from PubMedQA, consisting of 3,000 examples. The
input sequences were constructed by concatenating the
question and context fields. We then mean-pooled the
final hidden states to create fixed-size vector represen-
tations, providing a concise summary of each model’s
learned encoding of the combined input.

• CKA Score Calculation: Using a custom CUDA-
enabled CKA implementation, we computed pairwise
CKA scores between the extracted hidden states of mod-
els trained on different datasets. These scores provided
a direct measure of representational similarity.

• Visualization: We presented the computed CKA scores
as triangular heat maps, using different color schemes
to differentiate orthographic and phonemic models.

This analysis offered insights into how different language
combinations and script types (orthographic and phone-
mic) influenced the models’ ability to capture cross-lingual
similarity. The similarity matrices presented in Fig. 3 are
computed using the entire test set (3,000 samples), ensuring
that they reflect overall representational alignment rather than
single-instance behavior.

IV. RESULTS

Table II presents the evaluation results that compare mono-
lingual and multilingual models across different metrics.

A. Pretraining Setup

Table III summarizes the pretraining hyperparameters and
model architecture used in our experiments for reproducibil-
ity. The model follows a RoBERTa-based masked language
modeling (MLM) objective, utilizing different multilingual
and phonemic corpora configurations, as outlined in Table I.
The vocabulary size is dynamically adjusted on the basis
of the number of languages included in the training data,
ensuring efficient tokenization across different script types.



TABLE II
PERFORMANCE COMPARISON ACROSS DIFFERENT MODELS

Languages Accuracy F1 Precision Recall

Ortho Phoneme Ortho Phoneme Ortho Phoneme Ortho Phoneme

Test on French Dataset

Fra 0.743 0.765 0.740 0.760 0.750 0.777 0.730 0.745
Fra-Spa 0.762 0.771 0.766 0.755 0.754 0.813 0.779 0.705
Fra-Ita 0.770 0.765 0.774 0.770 0.760 0.753 0.788 0.789
Eng-Fra 0.783 0.780 0.788 0.784 0.770 0.771 0.808 0.797
Fra-Spa-Ita 0.757 0.753 0.758 0.756 0.755 0.746 0.760 0.766
Eng-Fra-Spa-Ita 0.771 0.774 0.758 0.760 0.804 0.807 0.717 0.719

Test on Spanish Dataset

Spa 0.747 0.751 0.750 0.756 0.741 0.740 0.759 0.773
Fra-Spa 0.782 0.784 0.781 0.771 0.782 0.821 0.781 0.727
Spa-Ita 0.791 0.776 0.777 0.773 0.830 0.786 0.731 0.760
Eng-Spa 0.799 0.790 0.801 0.787 0.791 0.800 0.813 0.775
Fra-Spa-Ita 0.767 0.783 0.764 0.786 0.775 0.776 0.753 0.795
Eng-Fra-Spa-Ita 0.789 0.792 0.781 0.786 0.814 0.808 0.751 0.766

Test on Italian Dataset

Ita 0.766 0.744 0.763 0.744 0.772 0.744 0.754 0.745
Fra-Ita 0.777 0.762 0.782 0.770 0.764 0.745 0.801 0.796
Spa-Ita 0.779 0.780 0.771 0.780 0.801 0.781 0.743 0.778
Eng-Ita 0.789 0.778 0.792 0.777 0.780 0.781 0.805 0.772
Fra-Spa-Ita 0.765 0.778 0.754 0.783 0.790 0.765 0.720 0.802
Eng-Fra-Spa-Ita 0.795 0.795 0.781 0.788 0.840 0.813 0.729 0.765

Bold values indicate the highest score among all models for each metric (Accuracy, F1, Precision, and Recall) in
both orthographic and phonemic evaluations, depicted as Ortho and Phoneme, respectively. Red highlights denote
the overall best performance.

TABLE III
TRAINING HYPERPARAMETERS

Pretraining

Number of Layers 6 Max Steps 100k
Hidden Size 768 LR Decay linear
FFN Inner Size 3072 Learning Rate 2.5e-4
Attention Heads 12 Warmup Steps 5k
MLM Probability 0.15 Weight Decay 0.01

Fine Tuning

Epochs 10 LR Decay linear
Metric Accuracy Learning Rate 2e-5
Warmup Steps 500 Weight Decay 0.01

B. Model Performance

1) Multilingual Models vs. Monolingual Models: Multi-
lingual models consistently outperformed their monolingual
counterparts, especially in configurations that included En-
glish. For example, in French evaluations, the monolingual
Fra model achieved an accuracy of 0.743, whereas the Eng-
Fra setup improved to 0.783. A similar trend appeared
in Spanish (0.799 vs. 0.747) and Italian tasks (0.795 vs.
0.766). These results contrast with general-domain NLP,
where monolingual training often prevails, and underscore
English’s value as a bridge language for medical QA.

2) Effect of IPA Conversion: Phonemic (IPA) trans-
formations exhibited limited and inconsistent benefits in

the medical domain. While phonemic variants occasionally
outperformed orthographic ones (e.g., Fra-Spa on Spanish),
such improvements were modest and irregular. Most IPA-
based models failed to surpass orthographic counterparts,
likely due to the high orthographic consistency of Latin-
derived medical terms. Thus, although phonemic alignment
aids general-domain cross-lingual transfer [7], [8], its impact
appears diminished in this domain where spelling-based
similarity dominates.

C. Model Analysis

1) Word-wise Attention Visualization: Fig. 2 visualizes
the attention distributions for three models, illustrating dif-
ferences in how they align the question and context tokens.

Ita Monolingual: The monolingual model (Fig. 2-(a))
exhibits scattered attention, failing to focus on key informa-
tion in the context, and prioritizing less relevant terms in
the question. This misalignment suggests that the Ita model
struggled to establish meaningful connections between the
question and the context.

Fra-Ita-Spa Multilingual: The multilingual model
trained on French, Italian, and Spanish (Fig. 2-(b)) demon-
strates better differentiation between the question and the
context compared to the Ita monolingual model. However,
it fails to consistently identify the critical terms needed for
an accurate understanding. Similarly to Ita, its attention is
diffused, resulting in suboptimal performance and ineffective
attention generation.



Fig. 2. Visualization of Attention Matrices of Monolingual and Multilingual Models. (a) Ita monolingual model, (b) Fra-Ita-Spa multilingual model,
and (c) Eng-Fra-Spa-Ita multilingual model. This visualizes where the network ”looks” while trying to extract the answer from the context. Key alignments
and token focus differences are highlighted.

Eng-Fra-Spa-Ita Multilingual: The Eng-Fra-Spa-Ita
multilingual model (Fig. 2-(c)) consistently attends to key
medical terms such as metabolismo, glucosio, and CMPF,
demonstrating a stronger alignment between the question and
context, which likely contributes to its superior classification
accuracy.

2) Cross-lingual Similarities of Orthographic and
Phonemic Representations: While attention heatmaps reveal
how models focus on important tokens, a broader view of
cross-lingual representation similarity is shown in Fig. 3.

Fig. 3. Cross-lingual Representation Similarity in Multilingual Models.
(a) Fra-Ita-Spa multilingual model excluding English. (b) Eng-Fra-Spa-Ita
multilingual model including English. The lower triangle (blue) represents
similarities in orthographic models, while the upper triangle (red) shows
similarities in phonemic models.

Representation Similarity Including English in the model
(Eng-Fra-Spa-Ita) increased the overall ability to capture
representation similarities across languages. For example,
the phonemic similarity between Italian and Spanish (Ita-
Spa) increased from 0.73 (Fra-Spa-Ita) to 0.78, surpassing
their orthographic similarity of 0.75. This suggests that
incorporating English contributed to stronger cross-lingual
representation alignment in both orthographic and phonemic
spaces.

Classification Performance Comparison Despite the
gains in phonemic similarity, orthographic representations
continued to produce higher or comparable classification per-
formance. On the Italian dataset, Eng-Fra-Spa-Ita achieved
identical accuracy (0.795) for orthographic and phonemic
settings. On the French dataset, phonemic accuracy showed
a slight improvement (0.774 vs. 0.771), but this trend was
not consistent across other datasets. These results indicate

that, while phonemic representations benefit from language
diversity, their utility in classification tasks within the med-
ical domain remains limited.

V. DISCUSSION

Our experiments highlight how linguistic diversity, phone-
mic representations, and orthographic consistency influence
multilingual medical NLP. Specifically, we show that while
phonemic alignment improves cross-lingual representation
similarity, orthographic consistency remains crucial for clas-
sification accuracy.

First, incorporating English improved the model’s abil-
ity to capture cross-lingual similarities, particularly in the
phonemic space. The phonemic similarity between Italian
and Spanish increased from 0.73 (Fra-Spa-Ita) to 0.78 (Eng-
Fra-Spa-Ita), surpassing their orthographic similarity of 0.75.
This suggests that the inclusion of English, with its typolog-
ical contrast, enhances phonemic representations, enabling
the model to better capture linguistic relationships across
multiple languages.

However, despite this representational gain, the classi-
fication performance remained stronger with orthographic
representations. As seen in the results, orthographic models
consistently outperformed or matched phonemic models in
medical QA tasks. This is likely due to the inherent structure
of medical terminology, which relies on orthographic consis-
tency across languages due to shared Latin roots. In contrast,
phonemic transformations introduce pronunciation variations
that obscure these similarities, reducing their effectiveness
for domain-specific tasks.

These findings highlight that the effectiveness of multi-
lingual strategies is highly domain-dependent, particularly
in medical NLP. Although phonemic representations are
often valuable for bridging typological gaps in general NLP,
medical NLP benefits more from preserving orthographic
forms. Future research could explore hybrid approaches
that selectively apply phonemic encoding to distant lan-
guages with different scripts (e.g., Roman and Brahmic)
while preserving orthographic consistency for languages with
shared etymological roots. Additionally, integrating script-
aware tokenization methods could further refine cross-lingual
knowledge transfer. Expanding this framework to include
non-Latin scripts such as Devanagari, Arabic, or Cyrillic



may offer additional insight into the role of phonemic
representations when orthographic overlap is minimal.
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